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Abstract. The historical importance of the original quantum mechanical bond theory proposed by Heitler
and London in 1927 as well as its pitfalls are reviewed. Modern ab initio treatments of H-H̄ systems
are inconsistent with the logic behind algebraic Hamiltonians H± = H0±∆H for charge-symmetrical and
charge-asymmetrical 4 unit charge systems like H2 and HH̄. Their eigenvalues E± = E0±β are exactly those
of 1927 Heitler-London (HL) theory. Since these 2 Hamiltonians are mutually exclusive, only the attractive
one can apply for stable natural molecular H2. A wrong choice leads to problems with antiatom H̄. In line
with earlier results on band and line spectra, we now prove that HL chose the wrong Hamiltonian for H2.
Their theory explains the stability of attractive system H2 with a repulsive Hamiltonian H0 + ∆H instead
of with the attractive one H0 − ∆H , representative for charge-asymmetrical system HH̄. A new second
order symmetry effect is detected in this attractive Hamiltonian, which leads to a 3-dimensional structure
for the 4-particle system. Repulsive HL Hamiltonian H+ applies at long range but at the critical distance,
attractive charge-inverted Hamiltonian H− takes over and leads to bond H2 but in reality, HH̄, for which
we give an analytical proof. This analysis confirms and generalizes an earlier critique of the wrong long
range behavior of HL-theory by Bingel, Preuss and Schmidtke and by Herring. Another wrong asymptote
choice in the past also applies for atomic antihydrogen H̄, which has hidden the Mexican hat potential for
natural hydrogen. This generic solution removes most problems, physicists and chemists experience with
atomic H̄ and molecular HH̄, including the problem with antimatter in the Universe.

PACS. 34.10.+x General theories and models of atomic and molecular collisions and interactions (including
statistical theories, transition state, stochastic and trajectory models, etc.) – 34.90.+q Other topics in
atomic and molecular collision processes and interactions – 36.10.-k Exotic atoms and molecules (containing
mesons, muons, and other unusual particles)

1 Introduction

Work on hydrogen-antihydrogen (H-H̄) interactions re-
mains inconclusive, despite ab initio techniques [1]. These
theories have their roots in 1927 Heitler and London
(HL) theory on HH-interactions [2a], which we review
here because of its historically important connection with
intra-atomic charge inversion, unknown in 1927. Using a
conventional charge distribution, HL concluded that the
stability of H2 is due to the anti-parallel spin-alignment
of the 2 valence electrons and their exchange [2a]. In the
early 1960s, the long range behavior of spin-spin coupling,
described by [2a], was criticized by Herring [2b], follow-
ing earlier work by Bingel, Preuss and Schmidtke [2c]
and Sugiura [2d]. Failing to solve HH̄ is strange, since
Kolos and Wolniewicz [3] proved that spectral data for
H2 and its PEC (potential energy curve) can be calcu-
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lated accurately and since H2 and HH̄ are two 4-particle
systems with similar constitution and complexity. If one
system can be described exactly, the other should also
be, at least if HL theory were correct and ab initio tech-
niques were really reliable. After a successful description
of H2, Kolos and others also analyzed HH̄ 30 years ago [4]
but could not get a complete and conclusive view on the
H-H̄-interaction. Many novel attempts to further quantify
system HH̄ followed [1].

The difference between molecular systems HH and HH̄
and between atomic systems H and H̄, is due to a sim-
ple parity operator P = ±1. As quantum theory easily
deals with symmetry, this failure is even stranger, as it
occurs for the simplest system of all, hydrogen. Failing to
reach a conclusion on HH̄ is important since recent studies
on HH̄ [1] are intensified by claims that mass-production
of antihydrogen H̄ seems possible [5]. The expectation is
that the H̄-spectrum or its important term 1S-2S will be
available soon, which is important for CPT, for the WEP,
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deriving from Einstein’s relativity theory and for antimat-
ter. But, like chemists, physicists also experience difficul-
ties with H-symmetry. An exact QFT solution for H̄ does
not exist, although H is assessed with great accuracy, the-
oretically and experimentally. These uncertainties about
chiral behavior of systems H, H̄ and HH, HH̄ are clearly
exposed since experimentalists [5] must come to the rescue
to settle these problems.

In the advent of Physics/Einstein Year 2005, solving
antiatom H̄ (physics) or interaction H-H̄ (chemistry) and
preferentially both is required. The real origin of the dif-
ficulties must lie in the first solutions ever for these sys-
tems, which means that Bohr H-theory (1913) and Heitler-
London H2-theory (1927 [2a]) must be revisited, probably
along the same lines as in [2b–2d]. To reach a transparent
conclusion from this historical survey, we start the anal-
ysis by focusing on Hamiltonians of 4 particle systems
HH and HH̄, rather than on wave functions in ab initio
methods [1–4]. The effect of symmetries within Hamilto-
nians is more important, simpler to understand and more
straightforward to quantify than that of symmetries in
the extremely complex wave functions of [1,4]. We show
that revisiting HL-theory can lead to a simple classical but
drastic solution for molecular HH̄, which, in turn, leads to
a drastic and unconventional solution for atomic H̄. By
extension, a problem of matter-antimatter symmetry in
the Universe can be avoided.

2 Molecular Hamiltonians and intra-atomic
charge inversion

Wave mechanics becomes classical physics again, when
the numerical value of a wave function is constant and
put equal to +1, which is useful to discuss Hamiltonian
symmetries. Then, there is an inconsistency in the effect
of inter-atomic interactions in 4-unit charge system H2,
when described exclusively with (a) the HL Hamiltonian
without a parity operator and (b) the HL wave function
with a parity operator.

With this constraint, it is evident that the discrete
symmetry exhibited by natural system H2, e.g. its mu-
tually exclusive singlet and triplet states, must be solely
attributed to wave functional symmetry: this is the clas-
sical HL-solution. But as soon as there is an overlooked
Hamiltonian symmetry having the same effect, the HL-
conclusion becomes doubtful, since it must be established
which parity operator is at the origin of the observed
splitting. This is what happens in the case of HH and
HH̄, when looking back at HL-theory [2a]. The origin
of 2 mutually exclusive states for a quantum system is
a parity operator P but, today and with the hypothesis
of charge-inversion, exactly this parity is a major prob-
lem for HL-theory [2a] as apparent with [1,4]. To prove
this in detail, we start with the non-relativistic 10-term
HL Hamiltonian for a 4-unit charge system (2 leptons
a, b and 2 baryons A, B with lepton-baryon charge-

conjugation for both atoms Aa and Bb) like in H2

H+ = +1/2mav2
a + 1/2mbv

2
b + 1/2mAv2

A + 1/2mBv2
B

− e2/rAa − e2/rBb

+ (−e2/rAb − e2/rBa + e2/rab + e2/rAB). (1)

The only difference with the 1927 HL-notation is a sub-
script + and a collection of inter-atomic terms between
brackets, expected to be responsible for bond formation and
stability. HL used the conventional Bohr-type charge dis-
tribution, valid at the time. The inter-atomic terms in (1)
may seem decisive for bonding but this is not absolutely
true. The reason is that HL do not allow for asymptotic
freedom for system H2, since they neglected ionic struc-
tures, for which a different asymptote is required (see be-
low). With H+, HL only fixed the asymptote at the atomic
dissociation limit, since H2 normally dissociates in 2 neu-
tral atoms H at rAB = ∞. But with the atomic dissocia-
tion limit shifted to the origin, it is impossible to conclude
with (1) from which side this zero limit is approached by
2 interacting neutral H atoms [2b–2d]. Realizing this, it
is essential to verify the character of HL Hamiltonian (1):
is it generically bonding (attractive) or anti-bonding (re-
pulsive), as in the Bingel-Preuss-Schmidtke and Herring
critiques [2b, 2c]? Only if its last term +e2/rAB for the
proton-proton interaction were decisive in the bond for-
mation process, the atomic asymptote is reached from the
repulsive side, contradicting the essence of HL-theory on
the stability of the H2 bond. This is the main theme of
our further analysis of stable molecular hydrogen, in line
with [2b, 2c].

Hamiltonian (1) applies for the two charge-
symmetrical H-H and H̄-H̄ interactions

H+(HH) = H+(H̄H̄) (2a)

an extension unthinkable of in 1927. Two charge inver-
sions leave the sign of all Coulomb terms in (1) unaffected.
Referenced to the asymptote, interaction ∆H (usually de-
noted as a perturbation) is the same for HH and H̄H̄ and
leads to one covalent bond energy Dcov for homonuclear
systems HH, H̄H̄

∆H = +(−e2/rAb − e2/rBa + e2/rab + e2/rAB) = −Dcov

(2b)
unless there would be an energy difference between atomic
systems H and H̄. This question [5] is treated below but,
since this difference, if it exists, is expected to be small it
can be neglected in first approximation to fix the atomic
dissociation limits for both systems H+H and H̄+H̄.

For (2b) to be bound, HL-theory implies that the fol-
lowing inequality holds

e2/rAb + e2/rBa > e2/rab + e2/rAB

a plausible hypothesis, but difficult if not impossible to
prove or validate [2b–2d]: in the HL-model, bonding is
achieved by virtue of the extra 2 lepton-baryon attrac-
tions, created when two neutral atoms get close.

Using the wave mechanical procedure with atomic
wave functions with a built-in symmetry, HL found in
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1927 [2a] that the eigenvalues for natural stable molec-
ular system H2 are given by

E± = E0 ± β (2c)

where E0 is the eigenvalue for the atomic asymptote and β
the eigenvalue of the resonance or exchange integral. The
appearance of exchange forces in HL-theory was surprising
and considered as a triumph for wave mechanics, since
these forces are unknown in classical physics.

However, for charge-asymmetrical H-H̄, H̄-H sys-
tems [1,4,6], an algebraic switch (a parity operator P)
appears. Its effect is restricted to the 4 inter-atomic terms
in (2b) [6], since intra-atomic terms remain as in HL-
approach (1). As only part of the terms in (1) is affected
by one intra-atomic charge inversion, this gives another
Hamiltonian H− with a different internal algebra (sym-
metry) than (1)

H− = +1/2mav2
a + 1/2mbv

2
b

+ 1/2mAv2
A + 1/2mBv2

B − e2/rAa − e2/rBb

− (−e2/rAb − e2/rBa + e2/rab + e2/rAB) (3)

the starting point in all studies on HH̄ [1,4,6]. Here, the
asymptote contains neutral atoms H and H̄ and if the
last term in (3) were again decisive for the interaction,
the same asymptote is now reached from the attractive
side, suggesting that, instead of H2, only HH̄ can be the
stable molecular hydrogen system, present in nature. This
drastic solution, if valid, would solve most of the problems
with H̄ [6].

For charge-inverted Hamiltonian (3) to be bonding at
the atomic asymptote, the inequality

e2/rAb + e2/rBa < e2/rab + e2/rAB

must hold. This is exactly the opposite view of HL-theory
but it is equally difficult to prove or validate and explains
why 4-particle systems are insoluble. The consequences
of (1) and (3) and their common asymptote Hatom will be
dealt with below.

However, we see that an internal algebra for a molecu-
lar Hamiltonian is possible and that this also generates a
discrete symmetry for 4 particle systems without the use of
wave functions. Obviously, this symmetry, due to charge
inversion, is competitive with the symmetry in wave func-
tions, due to lepton spin and exchange (permutation) in
1927 HL theory [2a]. If so, we have an internal inconsis-
tency with 2 different symmetries applying for the same
neutral 4 particle systems HH or HH̄, since both symme-
tries are described with the same parity operator P. This
internal inconsistency is the more remarkable as the effect
of lepton-spin on the total energy of a system containing
the lepton is small. A charge inversion on the lepton how-
ever, changes the character of the system: it transforms
from attractive to repulsive (or vice versa) with a consid-
erable, if not dramatic effect on the energy of the total
system to which the lepton belongs. This implies immedi-
ately that, as soon as a discrete symmetry is observed for a
system like molecular hydrogen, the chances to observe it

experimentally will be far greater when this symmetry is
due to charge-inversion, unknown in 1927, than when it is
due to lepton spin-inversion. Only if these inversions were
physically and/or formally degenerate, another problem
emerges, with interesting prospects also (see below).

The asymptote problem referred to above relates,
among others, to ionic structures. In fact, HL neglected
asymptotic freedom for the 4-particle system they de-
scribed: original 1927 HL-theory also disregarded ionic
structures for molecular hydrogen. This neglect led to
a long-standing rivalry between VB-(Valence Bond) and
MO-(Molecular Orbital) theories. In MO-theory, ionic
structures are as important as the covalent ones. In
VB-theory, the ionic contribution is parameterized [6], a
secondary problem we also discuss below.

3 First order Hamiltonian symmetry
for neutral 4-particle systems and HL-theory

The sum of intra-atomic terms, the atomic asymp-
tote Hatom, and inter-atomic terms (2b) reduces the differ-
ence between Hamiltonians (1) and (3) in one generalized
algebraic Hamiltonian

H± = Hatom ± ∆H (4a)

having a built-in parity operator, due to charge-inversion
only. The distinction between (1) and (3) on account of
the + and – sign in (4a) is purely conventional, since this
sign simply says how the interatomic terms in (1) and (3)
have been collected. With the above convention, it only
seems the HL Hamiltonian (1) is attractive, but this is
not absolutely valid as we will show in detail below.

Leaving this important problem as it is, it is imme-
diately verified nevertheless that the eigenvalues of (4a)
are

E± = E0 ± β (2c’)

using the same notation as in (2c). In essence, this means
that HL had to create a rather complicated wave mechan-
ical framework to obtain (2c), easily obtained with (4a)
without wave mechanics.

In fact, it is immediately verified, without calculations,
that the eigenvalues (2c’) of (4a) are formally the same as
those of HL-theory (2c). Moreover, it is strange that this
degeneracy of eigenvalues was never mentioned in [1,4] or
that alternative solution (3) for molecular hydrogen was
never considered. How can this ambiguity for explaining
the observed splitting in natural system H2 be removed?
If this mathematical degeneracy of eigenvalues (2c) and
those of (4a) is not resolved properly, this leads to the
many fundamental problems, referred to above.

The simplest unscientific way to get a solution for this
dilemma is to ignore it. In fact and historically, this is
exactly what happened. Indeed, the conventional and now
standard solution is extremely drastic, persists for decades
but, in reality, cannot even be validated: it simply for-
bids (3) in nature and promotes HL-theory to the status of
being absolutely valid for molecular hydrogen. This solu-
tion, adhered to by the physics and chemistry communities
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at large, generates problems with the presence of antimat-
ter in the Universe, with atomic antihydrogen H̄ and with
molecular HH̄ in particular. It is therefore necessary to
verify, as soon as possible, if this conventional decision,
i.e. forbidding (3) for natural H2, is scientifically sound.

At this stage, the unavoidable conclusion of discrete
symmetry (4a) due to charge inversion, deriving from
charge conjugation or particle-antiparticle symmetry C,
is that Hamiltonians (1) and (3) are simply mutually ex-
clusive. Only many years after Dirac particle-antiparticle
theory, atom-antiatom studies on the basis of (3) were
started [1,4]. It is easily verified that the above conse-
quence of symmetry (4a) was overlooked, when all 4-
particle systems HH (H̄H̄) and HH̄ (H̄H) were studied,
probably due to the involuntary neglect of (3) and (4a)
in 1927 HL-theory [2a]. But the logic of (4a) secures that,
if one Hamiltonian (1) or (3) in pair (4a) gives attraction
for a neutral 4-unit charge system, the other must give
repulsion for the very same system, since P = ±1: Hamil-
tonians (1) and (3) being mutually exclusive, a basic prop-
erty of quantum states for a system is obtained with (4a)
without ever speaking about wave functions. At large rAB ,
constant asymptote Hatom suffices for 2 non-interacting
neutral atoms, charge-inverted (H̄) or not (H). For the
hydrogen species, the absolute value for Hatom or eigen-
value E0 is 2RH = 2 × 109678.7737 cm−1 or 1 a.u. The
well depth below the atomic dissociation limit is the bond
energy Dcov, equal to 38292.8 cm−1, exactly the term ap-
pearing in (2b), which will decide by experiment about the
character of Hamiltonians (1) and (3).

Strictly spoken, 4-particle systems are insoluble and
approximations must be used to arrive at a conclusion
for (1) and (3). Different models will be typified by dif-
ferent asymptote-specific interactions, inventoried below.
The problem now is: do different justifiable approxima-
tions or models exist, other than HL-choice on the basis
of (1)? If so, these should be studied closely to see what
their physical or chemical implications are.

4 Different asymptotes for different particle
aggregates and their interactions

Not only by common sense but also by abundant evidence
provided by molecular PECs, which are always written
in terms of E(rAB), the inter-baryon separation rAB is
the decisive parameter to describe the stability of 4-unit
charge systems (Born-Oppenheimer approximation). By
this common sense criterion, HL version (1) is repul-
sive (anti-bonding) and only the charge-inverted Hamil-
tonian (3) can be attractive (bonding). To quantify this
important common sense conclusion, we collect 8 terms
in (1) and (3), allow for another constant asymptote HCoul

and rewrite (4a) as

H± = HCoul ± (e2/rab + e2/rAB). (4b)

This does not alter the total energy of the system,
only an asymptote shift is imposed, a constant, equal
to HCoul − Hatom. At the pure Coulomb asymptote

in (4b), the separations between all 4-unit charges are in-
finite. If charges attract exclusively 2 by 2 in separate
lepton-antilepton and baryon-antibaryon systems, with-
out lepton-baryon interactions being allowed, the 4-particle
system will lead to annihilation with Hamiltonian (3),
since there is no repulsion term in the bound state
of (4b), to prevent the collapse (annihilation) of these
two 2-particle systems. With HL-choice (1), this same
pure Coulomb system is always at the repulsive side of
its asymptote HCoul. In addition, the asymptotes for the
2-lepton system 1/rab must separate from that of the
2-baryon system 1/rAB, on account of the mass difference.
The energy set free by the attractive interaction (4b),
due to (3), can be as large as 2mec

2 + 2mpc
2 (lepton-

pair and baryon-pair annihilation). This is much larger
than with chemical interactions, where annihilative in-
teractions are obstructed by the (many) repulsive terms
in (1) and (3) and where (angular) velocities are about αc
instead of c. Despite this, model (4b) is of Dirac-type with
C-symmetry, as it can account for the observed annihila-
tion of particle-antiparticle pairs. In this case, this would
proceed through the intermediary of annihilating positron-
ium (rab) and antiprotonium (rAB) systems, in agreement
with observation. These systems derive from the charge
distribution obeying (3), not from HL-option (1), obvi-
ously of repulsive type for this same system. For annihi-
lation to take place, it is necessary that the asymptote is
reached from the lower attractive side with –1/r, in line
with Coulomb’s law but which is impossible with (1).

Asymptotic freedom for the 4-particle is an essential
element in the discussion of 4 particle systems on the ba-
sis of (1) and (3). If (1) is repulsive and (3) attractive, it
is difficult to accept that the nature of the 2 Hamiltoni-
ans will be inverted when the 4 particles are grouped in a
different way, say 2 atomic systems, the HL approach or
when another asymptote is used for the same system, i.e.
when asymptotic freedom is allowed for.

For instance, allowing for attractive lepton-baryon in-
teractions leads to a lower asymptote and means that the
4 independent particles will have to be regrouped, with at
least one lepton-baryon system allowed. Allowing 2 neutral
atoms (2 lepton-baryon systems) brings in the HL atomic
dissociation limit, where 4 particles are regrouped as 2 in-
dividual lepton-baryon or atomic systems.

To verify whether or not the symmetry (character) of
the 2 Hamiltonians (4a) is conserved after regrouping the
4 particles and using another asymptote, we consider a
third intermediate state of aggregation, with an asymptote
in between Hatom in (4a) and HCoul (4b).

Here, the 4-particle system is no longer a symmetri-
cal pair, each with 2 particles (4 = 2 + 2), like in (4a)
with two neutral atoms at or in (4b) with the 2 leptons
and 2 baryons. In this intermediate state, the 4 parti-
cles are redistributed asymmetrically by virtue of +4 =
+1 + 3 = +3 + 1. In terms of particles, this means: one
composite particle, consisting of 3 sub-particles, and one
non-composite particle (an elementary particle) [6]. With
respect to even systems (2+2) in (4a) and (4b), this in-
termediate state is odd. Yet, the advantage of this odd
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system is that common sense Coulomb law again becomes
the only law needed for the interaction between these new
particles with an asymmetrical internal constitution. By
the neutrality constraint, charge conjugation C and the
appearance of Coulomb’s law, one has unit charge +1,
the other –1. Odd 1+3, 3+1 combinations of 4-particle
systems imply a particle transfer but must always obey

H± = Hion ± e2/rAB. (4c)

This third asymptote is perfectly allowed and leads to
a different but very comprehensible type of interaction
for the very same 4-unit charge system, described by
HL-theory. With model (4c), it is immediately verified
once again that (3) is still the bonding Hamiltonian,
whereas HL-variant (1) remains as repulsive as it was at
asymptote (4b): first order Hamiltonian symmetry is con-
served in an odd-even transition, the result of a particle
transfer. With the appearance of a composite particle with
exactly one unit charge but containing 3 sub-particles, one
could be tempted to assign fractional charges to its 3 sub-
particles. These must be exactly +1/3 or –1/3 unit charge
each, pending the total charge of the composite particle.
For physicists, this would lead to the now standard quark
model [6,7]. For chemists, this simply leads to a classical
ionic model, wherein a non-composite cation (1 baryon)
with total charge +1 interacts, through Coulomb’s law,
with its charge conjugated composite anion with total
charge –1 (1 baryon and 2 leptons). In an odd ionic model,
only Coulomb’s law –e2/rAB , as in (4c) and extracted
from (3), is needed to account for attraction, since rAB

is the baryon-baryon separation. For the establishment,
HL-theory is the standard theory for bond formation in
which ionic structures like in (4c) for H2 are neglected.
Hence, ionic classical approximations to chemical bond-
ing [6,11,15] have been neglected for many years also.

In fact, the main problem with (4c) is that a classi-
cal ionic approximation is, exactly as (4b), of annihila-
tive type, since there is no repulsive term to prevent the
ion-pair from collapsing (annihilating). This can be reme-
died in particular cases by introducing repulsion of the
ion cores (like in Born-type potentials). These repulsive
forces, related to system compressibility, vary like 1/rn,
with n about 9 but these do not appear in the starting
Hamiltonians (1) and (3). Such core for H is difficult to
imagine but H can be compressed and expanded as well [8].

5 Generic simplification of Hamiltonians (1)
and (3) without a specific particle aggregate

At this stage and looking at particle redistributions (4b)
and (4c), HL Hamiltonian (1) is the repulsive one,
whereas (3) is, by exclusion of (1), the only attractive
Hamiltonian available for a 4-particle system. By con-
sidering (4a-c) we run out of possibilities for regrouping
the 4 particles, whereby 2 out of 3 asymptotes obey the
Coulomb law but are of annihilative type. Another solu-
tion must be found, which must avoid, in a generic way, a
4-particle system from collapsing (annihilating). There is a

straightforward way to do so without actually regrouping
the 4 particles. An intermediate asymptote between (4a)
and (4b) is also generated by regrouping terms in Hamil-
tonians (1) and (3) according to their individual character.
This more abstract method is generic in that it disposes
of the need to rearrange particles. One would simply col-
lect all Coulomb terms in a sum equal to ±ae2/rAB around
the equilibrium distance (to accommodate for intra-atomic
terms in rAa and rBb too) and all kinetic energy terms
in another sum, always of repulsive character +be2/r2

AB.
This repulsive character of kinetic energy terms is appar-
ent since, around the equilibrium distance, v will have to
vary with 1/rAB as expected from Bohr’s H-theory.

In this fourth model, the bond energy of the stable
system must be included in the energy gap to be covered
by the attraction. This energy gap extends from a yet un-
known asymptote HK , can include the atomic dissociation
limit Hatom and must finish at the system’s ground state
energy, at least if the 4-particle system is bound. There-
fore, this intermediate asymptote for a model, without a
specified aggregation of particles can only be valid when
rAB is close to the equilibrium separation (rAB � ∞).
This fourth solution for both (1) and (3) has asymptote
HK = Hion + be2/rAB, which is a pseudo-asymptote as
it cannot be constant. To remove this inconsistency, the
repulsive term is added to the attractive term to create a
new potential, consistent with constraint that asymptote
HK must be constant. Allowing for asymptotic freedom,
this fourth generic and new variant for (1)-(3) becomes

H± = HK + (be2/r2
AB ± e2/rAB) (4d)

and must directly refer to the ground state of 4 parti-
cle systems, described by (1) or (3). Here, a stable struc-
ture gets a minimum automatically. Since this is bound,
this must obey (3) instead of (1). Even in this rather ab-
stract method, the first order symmetry of the molecular
Hamiltonians is left unaffected : HL-version (1) remains
as repulsive as before and can never reach the status of
attractive.

The first advantage of this approximation (4d) by col-
lecting the terms by character over approximations (4a–
4c) is that it is, analytically and theoretically, capable of
producing directly a minimum for only one of the two
systems HH or HH̄ it describes, since the two states are
mutually exclusive. The 4 different models (4a–4d), with
different asymptotes and interactions, illustrate how far
one can go to find a reasonable solution for insoluble 4-
unit charge systems. In first approximation and without
wave functions, they allow to reduce semi-empirically (or
in a phenomenological way by relying on the Bohr H-
model for angular velocities) but significantly, charge con-
jugated Hamiltonians (1) and (3), at the basis of the HH,
HH̄ dilemma.

In 3 out of 4 cases, i.e. (4b–4d), only charge-inverted
Hamiltonian (3) invariantly leads to attraction, whereas
HL-choice (1) always gives a repulsive anti-bonding sys-
tem, as remarked earlier [2b–2d]. An extrapolation of this
evidence to HL-asymptote (4a) suggests that stable sys-
tem H2 (HH in HL theory), must obey charge-inverted
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Hamiltonian (3) rather than HL Hamiltonian (1). This
leads to the internal inconsistency of HL-theory and of all
studies [1,4], referred to above and to the problem with
the degeneracy of end-solution (2c) in HL-theory and in
its alternative (2c’), based upon (4a).

If first order Hamiltonian symmetry is conserved un-
der asymptote shifts, the conclusion must be that H2 =
HH̄ instead of HH as in HL-theory. If so, one must ac-
cept HL-theory may well be wrong but the immediate
compensation for accepting this bold conclusion would be
that the HH̄ and H̄ puzzles would be solved as argued
around (4a) [6].

An extra argument in favor of (4d) is that, when look-
ing at molecular spectra, (4d) is the algebraic generaliza-
tion [9a] of the original Kratzer-potential [9b]. The fame
of Kratzer’s teacher, Sommerfeld, secures that HL must
have known about (4d), since it was published in 1920 in
the same journal as [2a]. This potential figures in the long
list of potentials [6, 9a, 9c, 10, 11] proposed to account for
many phenomena, including molecular band spectra, but
which all take part in the search for the UEOS, the univer-
sal equation of state [8]. Kratzer’s potential (4d) is better
than Morse’s, when it comes to rationalize the spectro-
scopic constants of more than 300 diatomic bonds, includ-
ing prototype H2 [11]. In this broader context, focusing on
Hamiltonians like (4d) rather than on wave functions for
the HH-HH̄ dilemma is justified.

The second advantage of generalized Kratzer poten-
tial (4d) in this analytical form is that it imposes that
the observed PEC for the 4 particle system HH or HH̄
will have to obey an equation of the second degree in vari-
able 1/rAB, an amazingly simple result, easily verified with
the band spectrum of the system, to which this Hamilto-
nian refers, as we will show below. These bold predictions
on the PEC for 4-particle system H2 are simply impos-
sible with HL-theory [2a]. Fitting the H2 band spectrum
in this way will, if applicable, reveal the unknown asymp-
tote HK , invisible, neglected and overlooked in HL-theory.
Only experiment will tell how reasonable result (4d) is for
the spectrum of molecular hydrogen (see below). The out-
come of this confrontation will also tell us how to inter-
pret (2c) or (4a): either by a charge-inversion, forbidden
in nature by convention, or by lepton spin-inversion as
prescribed by standard HL-theory.

6 Antihydrogen atom H̄

For physicists, the main attention goes directly to unit H̄,
rather than to the chemistry of HH̄. Chemical variants (4)
reduce to 2 parity-related atoms H and H̄, enantiomers,
generated by intra-atomic charge inversion, a consequence
of C-symmetry. For atoms H or H̄ occupying the disso-
ciation limit Hatom in (4a), atomic level energies are ex-
pected to be invariant to this internal intra-atomic charge-
inversion. With principal quantum number n, Bohr theory
implies that, with reasonable accuracy (order 0.01 cm−1

or 10−6 eV), the identity

E(n)(H) = E(n)(H̄) (5)

holds, which fixes Hatom in (4a) for all possible H+H,
H̄+H̄, H̄+H and H+H̄ interactions. With reasonably accu-
rate (5), one cannot distinguish between these asymptotes,
due to the uncertainty about the energy of H and H̄. How-
ever, identity (5) is disproved as soon as a left-right energy
difference between H and H̄ exists but it is expected that,
when it exists, it will be small, without significant reper-
cussions for all chemical asymptotes like Hatom in (4a).
Finding out how large this parity violating energy differ-
ence is, is the ultimate goal of [5], as it is important for
CPT and for Einstein’s WEP (see Introduction).

A chemical solution for H̄ is nevertheless obtained as
soon as it can be proved that (3) is the exclusive Hamilto-
nian for natural stable system, molecular hydrogen. Unlike
HL-theory, this system should be regarded as a HH̄ sys-
tem, meaning that charge-inversion is allowed in nature,
contradicting conventional belief. Consequently, if species
HH̄ really exists in nature, the 2 mutually exclusive forms
(enantiomers H and H̄) of species hydrogen are tolerated
in nature too.

And if molecular band spectra provide evidence for the
existence of HH̄ in nature, atomic line spectra will have
to provide signatures for the reality of the two states H
and H̄ in natural species hydrogen. These two types of
signatures must be found, since they are complementary.
The detection of one type of signature, say of molecular
type, does not even make sense without the detection of
a signature of atomic type (and vice versa), as remarked
previously [12].

What does this mean for physics (H and H̄) and for
chemistry (HH and HH̄)?

For physics, expectation (5) is difficult to prove, since,
in first order, the Hamiltonians for H and H̄ are invari-
ant to an intra-atomic charge inversion. In reasonably ac-
curate Bohr theory (with an atomic wave function equal
to +1) and leaving out recoil, classical atomic Hamiltonian

H = 1/2mv2 − e2/r (6)

(without wave functions) applies indeed to both H and
H̄ and is at the basis of (5). With this accuracy (er-
rors of 0.01 cm−1), Bohr theory cannot generate with (6)
eigenvalues for left- and right-handed states of hydrogen
H and H̄. Despite its relative accuracy, Bohr’s formula
−RH/n2 is achiral : it cannot account for chiral behavior
in atomic hydrogen, if it existed [8]. Today, spectral accu-
racy is not a problem. The real problem is mass-producing
H̄ [5] to prove or disprove (5), since physicists are con-
vinced that H̄, just like all antimatter, is forbidden in the
natural world. But if observed molecular spectra are com-
patible with HH̄, observed atomic spectra will have to be
compatible with H̄. For atomic physics, line spectra can
reveal exactly those chiral symmetry breaking terms miss-
ing in the original achiral Bohr Hamiltonian (6). If these
can be retraced, these results run ahead of the ongoing
antihydrogen experiments [5], as argued in [12].

For chemistry, the parity operator in all models (4)
proves that it must be relatively easy to detect the differ-
ence between charge-symmetrical system HH and charge-
asymmetrical HH̄, if it existed. If it proves difficult to
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study unit H̄ on account of (5) and as proved de facto
by [5], it may be easier to verify how H̄ will interact, us-
ing the approximate schemes (4) above. The question is:
is a composite system HH or HH̄ either attractive (bound,
stable) or repulsive (anti-bonding, unstable)? HL-theory
seems conclusive but it is not, due to its inconsistency
with all other and valid models (4b–4d), as argued above.
All studies [1,4] adhere to the HL-model. To arrive at a
conclusion, only the first order symmetry (character) of
Hamiltonians (1) and (3) can reveal the symmetry of the
systems they stand for. Knowing that 2 mutually exclu-
sive Hamiltonians (1) and (3) exist by virtue of charge
inversion, we must first of all be absolutely certain about
their character : only one can be attractive, the other must
be repulsive. This fundamental problem is left out in [1,
4] since only the attractive Hamiltonian can apply to nat-
ural and stable system, conventionally called the hydrogen
molecule [6].

7 Hamiltonian character (or symmetry),
the direct consequence of charge
distributions

After 1930 Dirac-theory, the first question for chemists
should have been if HL-choice (1) was really the best and
the only one possible for the 4-unit charge system with
2 neutral atoms hydrogen. Why was variant (3), with its
opposite character (symmetry) inspired by Dirac-theory,
not considered immediately? For reasons difficult to un-
derstand in an historical perspective, the HL-choice (1)
is still accepted today, almost like an international stan-
dard, for neutral 4 particle systems and remained so for
over 75 years, despite the possibility that charge-inversion
in Hamiltonians is, at least, a theoretical alternative for
wave function based symmetries, see (2c) and (4a).

In fact, with generally accepted quantum HL-theory
for 4 particle systems, H+ applies for charge-symmetrical
H-H or H̄-H̄ interactions (parallel dipole alignments ↑↑ and
↓↓ in terms of charges), which automatically leaves H−
for charge asymmetrical H-H̄ or H̄-H interactions (anti-
parallel dipole alignments ↑↓ and ↓↑) as it should [1,4,6].
With (4a), charge-symmetrical interactions HH and H̄H̄
must always separate from charge-asymmetrical interac-
tions HH̄ and H̄H in a discrete way for any value of rAB ,
just like the (lepton spin-based) singlet-triplet splitting in
molecules [6], according to HL-theory [2a] and as criticized
in [2b, 2c]. But HL had to use wave functions with built-in
symmetries exactly, as argued above, to remedy for the re-
pulsive character of Hamiltonian (1) they used to describe
molecular hydrogen. This led to an anti-parallel spin align-
ment for valence electrons (leptons) and to composite wave
functions to account using repulsive (1) for attractive and
stable system H2. To the best of my knowledge, HL-theory
was never seen in this important historical context.

Most physicists as well as chemists seem to be unaware
of the generic implications of charge inversion leading
to (4), since (3) is still forbidden for natural systems. One
could have done easily the exercise like we suggested in

1985 [13], purely out of theoretical interest, with Hamilto-
nian (3) for system H2, with as unique benchmark, Kratzer
potential (4d), available since 1920. If this exercise had
been done properly and in due time, it may well have had
a considerable effect on the further developments in the-
oretical chemistry as well as in atomic physics, where it
led to bound state QED. But since this exercise was not
done at the time it was most needed, the original 1927
HL-approach [2a] is still considered today as a master-
piece of quantum mechanics and highly praised as such
in many textbooks. It remains the most important contri-
bution to the theory of the chemical bond in the 20th cen-
tury [14]. The new insight it provided for covalent bonding
in system H2 by means of exchange forces, not having an
equivalent in classical physics, is still the main argument
in its favor. Unfortunately [6], it was also the final blow for
classic ionic bonding proposed in the early 19th century,
despite the common sense of the fundamental nature of
the Coulomb law, at its basis [6,15]. In reality, this is a
fatal and historically important misjudgment, as is easily
proven mathematically.

First, let us use an earlier argument. Although ionic
model (4c) was immediately abandoned after HL-theory,
it is known to perform well for many stable 4-particle sys-
tems, i.e. non-covalent, polar or heteronuclear molecules,
whereby attraction –e2/rAB is prominent [6,11]. Due
to (4a), HL (1) can never be mathematically inverted from
its generic repulsive character +e2/rAB to an attractive
character –e2/rAB . At the very best, a pseudo-ionic HL
approach is possible using the escape method by regroup-
ing particles in the odd ionic way, discussed above. But in
a pseudo-ionic HL-model, ions can never attract directly
by –e2/rAB but only indirectly by virtue of the 2 lepton-
baryon interactions –e2/rAb – e2/rBa, exactly as argued
already in 1985 [13].

Second, one should have been suspicious on the real
message behind the mathematical equivalence of spin- and
charge-operators: apart from scale factor 2, they are iden-
tical. Is this accidental or has something been overlooked?
Is the degeneracy reported above of (2c) and the eigen-
values of (4a) at the origin of these 2 mathematically
equivalent yet physically different operators? Why can or
should two different approaches exist simultaneously to
explain the stability of the same natural system molecu-
lar hydrogen, although one predicts HH, the other HH̄?
Spin- and charge-effects upon the total energy of a sys-
tem being completely different, drastic effects in (bonding)
energy like in (4a) are therefore always in favor of (for-
bidden) charge-inversion rather than (conventional) spin-
inversion.

Third, even common sense tells that HL-model (1) is
not the attractive Hamiltonian. To imagine how atomic
dipoles interact, one can rely on a classical well-known
example: the interaction of 2 permanent linear magnets.
A parallel configuration (↑↑ or ↓↓) is always repulsive and
unstable. It can only be transformed in a stable system by
a permutation of one of the two magnets (↑↓ and ↓↑) [6].
This simple verifiable experiment would lead to the generic
conclusion that charge-asymmetrical Hamiltonian (3) is
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bonding, which is immediately contradicted by HL-theory,
where charge-symmetrical (1) must be bonding. Yet, the
HL-proof is much more complicated than the simple ver-
ifiable experiment with 2 permanent magnets (dipoles).

Fourth, a permutation of charges is a charge-inversion
or a charge-exchange, to use the HL-terminology. The
HL-permutation proceeds through the wave function.
With a single atomic product wave function

1sA(a)1sB(b)

no stable system can be obtained in HL-theory [2a], see
also [2b, 2c]. Only allowing a permutation (an exchange) as
well as a symmetry with atomic composite wave function

1sA(a)1sB(b) ± 1sA(b)1sB(a)

leads to a stable bonding (singlet) and an unstable anti-
bonding (triplet) state with Hamiltonian (1), itself devoid
of the corresponding algebraic switch. With (3), the per-
mutation with respect to (1) proceeds directly in Hamil-
tonian, not in the wave function, which explains the de-
generacy above.

Fifth, a different argument to flaw the HL-approach
is provided by the prospect of annihilation, as argued
for (4b–4c). Due to Dirac particle-antiparticle theory and
the detection of annihilating particle pairs, one invari-
antly expects that H-H̄ interactions (3) lead to annihi-
lation [1,4,5]. Is this expectation met or not? Here, com-
mon sense learns that, for annihilation to be possible at
close range (small rAB), the energy E(rAB) of charge-
asymmetrical system H-H̄, must first go the more stable
attractive side of its asymptote Hatom in (4a), much like a
singlet state of a bond in HL-theory. And when (3) is
exclusively connected with an attractive (singlet state)
system on account of (4b–4c) and the prospect of anni-
hilation, HL Hamiltonian (1) can only apply for a repul-
sive system (triplet), as argued in [2b, 2c]. This elementary
consequence of annihilation is also in contradiction with
HL-theory, stating that only charge-symmetrical systems
H-H (H̄-H̄) with (1) lead to bonding (attraction) as in H2.

Since HL theory is the basis for all ab initio studies
on HH̄ [1,4], the same basic inconsistency applies for all
these approaches too. With HL-theory, H−(3) cannot be
bonding (attractive), although with the prospect or expec-
tation of annihilation, with the experiment with the 2 mag-
nets, approaches (4b–4d). . . , it should.

Analytically, this is easily confirmed when looking at
the more important terms in (1) and (3). If rAB, the inter-
baryon separation of the 4 particle system is really deci-
sive for the stability of a structure containing these two
building blocks, it is evident that +e2/rAB in (1) leads
to repulsion and forbids annihilation [2b, 2c]. In 1962,
Herring wrote explicitly: ‘Closer inspection of the Heitler-
London calculation for the hydrogen molecule shows that
at very large interatomic separations, it becomes physi-
cally unreasonable and its predictions impossible [2c]. For
at large rAB , the positive 1/rAB term in (1) becomes domi-
nant [2d], being larger than the other terms. . . ’ This dom-
inance of the repulsive term 1/rAB in (1) was exposed
already in 1927 also by Sugiura in the same journal [2d].

With these views, (3) containing –e2/rAB becomes at-
tractive by definition, but the conditio sine qua non for
this to be true is that this term is indeed the most impor-
tant and decisive one for the formation of a stable 4 par-
ticle system. Reminding the mutually exclusive character
of the 2 Hamiltonians in (4a), it suffices to prove ana-
lytically the absolute character of only one Hamiltonian
of the two. With the analytical results of [2b–2d], (1) is
proved repulsive at long range, which makes (3) attractive
by definition. Although this is also simple common sense,
it must be verified more thoroughly than in [2b–2d], es-
pecially at shorter range. Here, the problem with the ex-
clusive attractive character of (3) must be solved in an
irrefutable way. Despite the vain attempts in [1], prob-
lems are solved immediately if a stable bonding interme-
diate, non-annihilating HH̄-complex existed and could be
observed by spectroscopic methods (see below).

8 The universal equation of state (UEOS),
Hamiltonian character and attraction by −1/r

Discussing a system solely with its Hamiltonian is in it-
self ambiguous. Using a wave function exactly equal to
a constant +1 in wave mechanics means that classical
physics is reproduced, the viewpoint of the classical 19th
century physicist. A physicist educated with wave mechan-
ics would think that, if this method works, some univer-
sal kind of wave mechanics exists, where the numerical
value of any wave function of wave mechanics can be
replaced by +1. This means that, in essence, the wave
function is of secondary importance. This bold conclusion
is confirmed by illustrious examples, of which the most
obvious is, again, simple system H. Its energy levels ob-
tained with Hamiltonian (6) are identical, whether one
uses Bohr physics without wave functions or Schrödinger
physics with wave functions. For H, the analytical prop-
erties of the wave function are such as to not contradict
the Bohr energy result. In addition, their analytical prop-
erties are also such as not to contradict term splitting,
not accounted for by Bohr theory, but by Sommerfeld’s
additional or secondary quantum number � = n− 1, orig-
inally arrived at without wave functions too. Up to this
level of accuracy for the theory, wave mechanics as such
has no added value for H. A wave function allows for
corrections needed to accommodate fort shortcomings in
a Hamiltonian, thought to be sufficiently accurate to de-
scribe a system (a good example is bound state QED).
Claims that wave mechanics has ab initio status like in [1]
is an overestimate, as proved by Kolos’ work on both sys-
tems H2 [3] and HH̄ [4]. Only for H2, spectral data are
available, which led to very good results by selecting ex-
actly these wave functions, capable of reproducing the spec-
tral data with (1). But when these same good wave func-
tions are applied to (3) and HH̄, for which no spectral
data exist, uncertainty prevails. In some of the works on
HH̄ [1], rather subjective criteria are used for selecting so-
called well-performing or well-behaving wave functions.

If quantum mechanics were really reliable and abso-
lutely valid – as argued in Dirac’s time –, the antihydrogen
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problem should not even exist, given the simplicity of its
structure and of the parity operator involved. Dirac once
wrote that “. . . the underlying physical laws necessary
for the mathematical theory of a large part of physics
and the whole of chemistry are thus completely known. . .
[but that the]. . . equations [are] much too complicated to
be soluble” [16]. For chemistry, Dirac clearly referred to
HL-theory [2a]. Looking at (2c) and (4a), his conclusion
on chemistry could well be wrong, pending the tests with
(4d) below.

For physics, Dirac-based bound state theory for atom
H was flawed by the Lamb and Rutherford experiments.
Surprisingly or not, the Lamb shift is directly linked with
a signature needed to prove the presence of H̄ in nature,
as stated in 2002 [12] (see further below).

Despite these flaws, theoretical and computational
chemists are still convinced that Dirac was right and still
believe that the only correct solution for atom-atom in-
teractions is provided with HL-theory and its many mod-
ern variants [1,4]. This shows why an objective analysis
of (4a), and the degeneracy of its results with (2c), is re-
quired as soon as possible. And to do so, the importance
of the attractive term −1/rAB for the stable 4-particle
structures must be proved beyond doubt.

One of the main characteristics of almost all attempts
to find the UEOS is that attraction by −1/r is their most
important common element: only this is exclusively con-
nected with (3) and mathematically impossible with (1).
As in Coulomb’s law, attraction by −1/r is a common
sense approach, an idea that goes back to Newton’s times.
For a variety of phenomena in many body systems, rang-
ing from macroscopic changes in the state of aggregation
to microscopic BEC transitions. . . attraction by −1/r is
the rule, never the exception [8]. A classical Hamiltonian
approach with a leading attractive term in −1/r is the
only one that fits in the long list of attempts to find the
universal equation of state (UEOS) or, in the present ter-
minology, the universal Hamiltonian. This equation, if it
existed, should account analytically for any phase transi-
tion for any system on whatever scale (micro or macro) [8].
Many scientists try to find out, most of the time empir-
ically, how this intriguing UEOS should look like ana-
lytically [6,10,13,17]. For the universal chemical bond or
4-particle system under discussion here, the UEOS is a
universal potential, which directly gives a universal nu-
merical PEC for any molecule and for any type of bond.
Elsewhere [13], we showed that the Kratzer function (4d)
is a serious candidate to be of universal type and it may
even open the way to find this intriguing UEOS.

With this broader context of the UEOS and the fun-
damental character of Coulomb’s law, all evidence points
towards the decisive role played by −1/rAB for attraction
and, hence, for stable systems. If so, the attention must fo-
cus on Hamiltonians rather than on wave functions. And if
it turns out that wave functions are needed with a discrete
symmetry, this is simply a message that a discrete symme-
try (a parity operator) is missing in the Hamiltonian used
for the system. Using the UEOS and Coulomb’s law as
measures, Hamiltonian H− (3) is bonding by definition,

which makes HL-option H+ (1) repulsive also by defini-
tion. This definitely settles this question about the sym-
metry (or character) of mutually exclusive Hamiltonians
for 4-particle system (1) and (3) and the stable 4-particle
system they stand for: by virtue of (4a) and (2c), molecu-
lar hydrogen must be denoted as charge-asymmetrical HH̄
not as charge-symmetrical HH [6].

9 Second order Hamiltonian symmetry.
Analytical proof for H2 = HH̄

Before analyzing experimental data, we already presented
enough evidence to conclude that the generic character
of charge-inverted Hamiltonian (3) is attractive, given
its first order symmetry implications. In addition, a sec-
ondary symmetry effect due to charge inversion exists,
which is in favor of Hamiltonian (3) as this effect is ex-
cluded for HL-option (1). Additional secondary symmetry,
implicit in charge-asymmetrical scheme (3), is only valid
for lepton-baryon terms in (3) but not in (1).

Again, without using wave functions of any kind or
combinations thereof, terms in (3) can also be reordered as

H− = +1/2mav2
a + 1/2mbv

2
b + 1/2mAv2

A + 1/2mBv2
B

+ (−e2/rAa − e2/rBb + e2/rAb + e2/rBa)

− e2/rab − e2/rAB (7)

wherein lepton-baryon Coulomb interactions are collected
between brackets. With (7), the effect of this second or-
der symmetry for lepton-baryon interactions in 4-particle
structure HH̄ becomes evident. In fact, this opens the door
for only one critical geometrical arrangement of the 4-
particle HH̄ complex, for which all 4 lepton-baryon terms
vanish exactly 2 by 2 — a theoretical possibility excluded if
HL Hamiltonian (1) is used. With this secondary symme-
try element, bound state H− (7) is also simplified consid-
erably (from 10 to 6 terms) but in a different way [6]. Al-
though a minimum in (4d) is easily obtained by putting its
first derivative (d/drAB) equal to 0 (see below), (7) throws
another light upon the collection of terms by character and
on the spatial or geometrical particle arrangement in this
approximation. For this critical spatial configuration, (7)
reduces to

H− = (+1/2mav2
a + 1/2mbv

2
b − e2/rab)

+ (+1/2mAv2
A + 1/2mBv2

B − e2/rAB) (8a)
[ = positronium + antiprotonium]

by virtue of the very stringent secondary symmetry re-
quirement for (7)

(−e2/rAa − e2/rBb + e2/rAb + e2/rBa) = 0. (8b)

Here, (8b) is an extra stability or symmetry constraint
for 4-particle systems, not yet discussed above and exclu-
sively connected with charge-inverted Hamiltonian (3). By
this extra condition, a stable neutral 4 particle system is
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(a) (b) (c)

Fig. 1. The 6 Coulomb terms in (1), pseudo-ionic (a, c), co-
valent (b), constraint (8b) not applicable.

generated, consisting of 2 neutral subsystems positronium
and antiprotonium, whereby the position of the positron-
ium system is either symmetrical (covalent bonding) with
respect to the two charge conjugated baryons in antiproto-
nium or asymmetrical (ionic bonding). In wave mechanics,
wave functions are measures for spatial system configura-
tions (representations). But, once again, this is not the
case with generic equation (8), which imposes a stringent
analytical condition for the configuration of a 4-particle
system directly in the Hamiltonian, a condition impossible
to reach with continuously varying wave functions.

Moreover, critical symmetry (a configuration) (8b) for
complex HH̄ is automatically and always obtained with
a charge-inverted ionic system (ion anti-ion pair), only
possible with a particle transfer (odd system +4 = +1 +
3 = +3 + 1). In this case all 4 lepton-baryon terms in
(7) always cancel exactly and can be disregarded in the
attractive Hamiltonian (3) [6].

Despite its simplicity, (8b) is a rather drastic crite-
rion indeed, since it disposes of the effect of the 4 lepton-
baryon interactions in the bound 4-particle system along
Coulomb field axis rAB but these lepton-baryon interac-
tions are exactly the terms needed in HL-theory to explain
covalent bond formation and stability. Without attractive
lepton-baryon terms, HL-theory could not even survive, as
shown above. The possibility that lepton-baryon interac-
tions could disappear from the scene by virtue of simple
geometric symmetry effect (8b) can be interpreted as if
leptons and baryons, known to interact strongly at long
range, suddenly and at short range did no longer interact
and were completely free to move within the 4-unit charge
system. This interpretation of secondary symmetry (8b),
together with the asymptote shifts and the idea of frac-
tional charges +1/3 and –1/3 discussed above, brings in
the essentials of the quark model for particle physics. In
this way, molecular hydrogen can be interpreted indeed
as a 4 elementary particle system, but only on account
of (8b), which means that molecular hydrogen be denoted
by HH̄.

Critical geometries (structures) are shown in Figures 1
and 2 [6]. These are also needed to explain the rather sub-
tle difference between classical ions and charge-inverted
ions. Figure 1 gives pseudo-ionic models in HL-model (1),
whereas Figure 2 gives the corresponding really ionic
structures with charge inverted Hamiltonian (3). Com-
pletely or 100% ionic structures with shape � or A−B+

(a) (b) (c)

Fig. 2. The 6 Coulomb terms in (3), ionic (a, c), covalent (b),
constraint (8b) applicable (equatorial: baryons, axial leptons;
full lines: attraction, dashed lines: repulsion).

and � or A+B− are not shown, since the underlying inter-
action details cannot be displayed properly.

Figure 1 shows clearly why bonding lepton-baryon at-
tractions are vital for HL-theory. The classical covalent
HL-model, Figure 1b, in between two pseudo-ionic struc-
tures 1a and 1c, has become an attractive positronium
antiprotonium model in Figure 2b. This can be seen as a
19th century mechanical Watt regulator or a gyroscope.
The static baryon system in antiprotonium is under con-
trol of a rotating positronium system (in a plane perpen-
dicular to rAB) and situated exactly in the middle of rAB

in the case of a homonuclear bond like H2 = HH̄. It is eas-
ily verified by graphical inspection of Figure 2 that, what-
ever the position of the positronium system with respect
to the baryons, the projection of the 4 lepton-baryon inter-
actions on the inter-particle field axis (rAB) is always zero,
as required by symmetry (8b). For heteronuclear ionic as
well as for anti-ionic systems (with a permanent dipole mo-
ment), the 2 leptons will be displaced towards the more
electronegative atom.

These are the concrete 3-dimensional structures gener-
ated for the bound 4-particle system, just on the basis of
the twofold Hamiltonian symmetry discussed above, with-
out using any wave function.

It is evident from (8a) that, after collecting and, even-
tually disregarding lepton-baryon terms by the second
symmetry constraint (8b), the result of (8a) after col-
lecting terms of the same character is again a Kratzer-
potential like in (4d).

However, there is a significant difference: although a
difference may occur for the value of coefficients a and b
as well as for the value of the Kratzer asymptote HK in
(4d), the Kratzer variant generated with (8a) can only be
bonding, as repulsive Coulomb terms are excluded by (8b).
With constraint (8b), (4d) can only transform in the orig-
inal attractive Kratzer-potential of 1920

H− = HK + (be2/r2
AB − e2/rAB) (8c)

which is the only attractive solution left for a 4 particle
system obeying (3). This equation finally proves analyti-
cally that Hamiltonian (3) is the only one possible to lead
to a bond for molecular hydrogen, which cannot be de-
noted but by HH̄. Hence, focusing on Hamiltonian sym-
metries proves to be quite productive historically, concep-
tually and even analytically.
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Although for (4d), it was difficult to say something
about critical particle configurations, this uncertainty is
now removed, as illustrated in Figure 2, due to the sec-
ondary symmetry (8b), applicable for (3) but not for (1).
Exactly as for (4c), ionic charge-asymmetrical H+H̄− or
H−H̄+ configurations reduce the 6 terms in (8) to the 2,
already given in (4c) [6].

Schematically, covalent molecule H2 can be considered
as referring to ionic structures [11,15]

H2 = HH̄ = 1/2[(H+H̄− + H−H̄+]. (8d)

If wave functions are necessary to describe covalent bond-
ing at close range, ionic rather than atomic wave func-
tions will have to be used for Hamiltonian (3). This is
completely different than the procedure applied in [1,4]
and sheds a new light on the difference between VB- and
MO-theories [6].

On the basis of this twofold symmetry of the molecular
Hamiltonian (4a) and (8b), completely absent in original
HL-theory, there is only one solution possible for a stable
4-unit charge system: charge-inverted Hamiltonian (3) is
exclusively connected with bound stable systems, whereas
HL Hamiltonian is doomed to be repulsive. If so, neutral
composite antiparticles must be allowed in nature, and by
extension, also antimatter. This contradicts the conven-
tional solution for (4a), by excluding charge-inversion in
natural systems, as argued above. The original Kratzer
potential (8c) is and remains the generic bonding solu-
tion for (3) and, as such, must apply to a bound neutral
4-particle system. Solution (8c) must be confronted with
experiment for molecular hydrogen, the only stable and
natural 4 elementary particle structure yet accessible by
spectroscopic means.

10 Identifying the stable
hydrogen-antihydrogen complex:
the natural H2 molecule

To verify the attractive or repulsive character of Hamilto-
nians (1) and (3), the only reliable and objective source
of information is the spectrum of a 4-particle system, a
chemical bond. This will reveal the shape of its PEC, its
well depth and the position of its minimum. Only the PEC
of a 4-particle system can disclose the exact path followed
by its sub-systems when these interact and form or do not
form a stable system. Spectroscopy is a very efficient, if not
the only available, tool to decide about the applicability of
our final result (8c) as well as of potentials (4a–4d) and to
remove the dilemma on the interpretation of eigenvalues
(2c) and those of (4a). Before going into the important
details, we give a global view on the four approximations
(4a-d), which includes potential (8c).

10.1 PECs for all systems (4a–4d) and (8c)

Generic results (4a–4d), based upon an asymptote shifting
procedure, are presented graphically in Figures 3a and 3b.

(a)

(b)

Fig. 3. (a) Potentials (4a–4b) and observed PEC for H2 versus
n (from top to bottom at n = 4, numbers in Tab. 1, dashed
lines: 4(+), 1(–), 2(–), 3(–), 4(–) full line normal 4(–), dashed
lines: 5(+ and –); full line bold 6). (b) Potentials (4a–4b)
(dashes) and observed PEC for H2 (bold) versus 1/n (same
sequence as in Fig. 3a at 1/n = 0.25).

Instead of rAB, number n = rAB/r0 is used as a nu-
merical variable, the reduced inter-baryon separation. For
pure Coulomb systems, we apply r0 = 1 Å, but for H2-
related PECs, r0 = 0.74144 Å. Linear variable n is used
for all PECs in Figure 3a, whereas for Figure 3b inverse
1/n applies.

Table 1 gives all quantitative data for models (4a–4d),
used for the construction of Figure 3.
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Table 1. Potentials and asymptotes used for all PECs in Figures 3a and 3b.

# Equation r0(Å) Asymptote (au) Potential Remarks

1 (4b) 1 1 (1 ± 2/n) 2 Coulomb systems (+ branch not shown)

2 idem 1 1 (1 ± 1/n) 1 Coulomb system (+ branch not shown)

3 (4c) 1 1/2 (1 ± 1/n)/2 ionic system (+ branch not shown)

4 (4d),(8c) 0.74144 1/2 (1 ± 1/n)2/2 – 0.18 0.18 au H2 bond energy (part of + branch)

(8c) is bound state of (4d)

5 (4a) 0.74144 0 +0.025/n HL, guess for repulsive (2b), partly shown

6 0.74144 0 ? RKR PEC for H2

As a reference point, the PEC for H2 is also given with
a minimum at 0.74144 Å and well depth of –0.17447 a.u.
(see further below). It is situated at the attractive side of
the repositioned atomic dissociation asymptote 0 in (4a).
This global view on all approximations for Hamiltoni-
ans (1) and (3) is essential to distinguish clearly between
them with as sole and decisive reference: the observed
band spectrum of natural molecular hydrogen [6].

Let us start with the seemingly worst approxima-
tions (4b) with two variants (cases 1 and 2 in Tab. 1)
and (4c) in both Figures 3a and 3b. Their repulsive
branches, due to HL Hamiltonian (1), are not shown in
order not to lose the details of their attractive branches
in the bonding region, i.e. around asymptote 0 and fur-
ther below. Despite the simplifications to arrive at sim-
ple Coulomb potentials (4b–4c) for which r0 = 1 Å is
used (see Tab. 1), they nevertheless all end in the criti-
cal bonding region of natural system H2, either directly
at its minimum: (4b), version 1 − 2/n or at the intersec-
tion with asymptote 0: (4b), version 1 − 1/n and ionic
model (4c). In this respect, also the ionic potential (4c)
behaves properly in the critical region, despite its total
neglect in HL-theory. The apparent convergence of so-
called bad or naive Coulomb potentials (see Tab. 1) is
surprising, especially since they all use Hamiltonian (3)
and are impossible with HL Hamiltonian (1). The picture
is simpler in version 1/n in Figure 3b. Here, linearity al-
lows extrapolation of the Coulomb inverse power law to
two different worlds (+ and –), a combination mathemat-
ically forbidden for inverse power laws [6]. This seemingly
bad behavior of Coulomb approximations for system H2 is
easily removed, since the real universal properties of the
Coulomb law for 4-unit charge systems like H2 are easily
exposed [6]. For the assessment of HL-theory, the results
are amazing when looking at the analytical behavior of
simple ab initio Kratzer potential (8c), i.e. (1 − 1/n)2/2,
when compared with the observed PEC, see Figure 3a.
With its limitation to the bonding region, it is only natu-
ral to see that it diverges from the PEC at the extremes
(see Fig. 3b). The approximation used for HL-result (4a)
in Table 1 may seem suspicious but, to the best of my
knowledge, a better approximation for (2b) without the
use of wave functions is not available (at least, none was
retrieved in the literature).

Both Figures 3a and 3b show that in the critical re-
gion at long range, a multitude of attractive potentials, all

deriving from (3), must cross the single repulsive one, gen-
erated by HL Hamiltonian H+. Exactly here, interference
of long-range forces (dipole-dipole, Van der waals interac-
tions. . . [8]), cannot be excluded. But this must not alter
our conclusions based upon (1) and (3), wherein inter-
actions of type 1/rn with n > 2, are absent. The pres-
ence of a repulsive part in the PEC at long range (before
the critical distance is reached), as shown in Figures 3a
and 3b, would lead to small maximum (an instability re-
gion) for the neutral 4-particle system. If a (small) max-
imum is detected, this long-range part of PEC, can, in
our approach, only occur due to the repulsive HL Hamil-
tonian H+ (1) [2b, 2c]. This maximum disappears when
the HL PEC would cross any of the PECs, generated by
bonding Hamiltonian H−. Long-range maxima in PECs
are known for long (see Fig. 3 in Varshni’s review [10]).
Of course, up-down behavior of molecular PECs (i.e. up
at large separations, down at small range) is a signature
for a phase transition. If so, the H+, H− distinction (4a)
may be important for other phenomena too, and its use
must not be restricted to chemical bonds. Ultimately, this
brings in a discussion about the UEOS and phase transi-
tions, an important issue as argued above but not further
discussed here [8].

Instead, given the good behavior of the Kratzer poten-
tial in Figure 3, we now confront in detail the observed H2

spectrum with a second degree fit, imposed by the Kratzer
potential (8c).

10.2 PEC for natural stable system: the hydrogen
molecule, confronted with Kratzer potential (8c)

The detailed H2 PEC E(rAB) is shown in Figure 4a. To
illustrate the amazing power of the generic Kratzer po-
tential (see Fig. 3), we remind that the PEC generated by
the original HL-method [2a] had a similar shape as that
in Figure 4a but, in terms of accuracy for well depth and
position of the minimum, it was rather bad. It took James
and Coolidge 6 more years to calculate a better one [18]
and even 30 more years were needed for really good re-
sults [3]. But using the same technique for HH̄, these same
authors were uncertain about the PEC for system HH̄ of
interest here [4]. The RKR PEC for H2 used in this work
for Figures 3 and 4 is taken from [19].

A difficulty with the E, rAB presentation in Figure 4a
is that, despite its smooth form, it is difficult to fit,
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(a)

(b)

Fig. 4. (a) Classical representation of RKR PEC for H2 [19]
(�: turning points, line aid to the eye). (b) Inverse presentation
of RKR PEC for H2 (�: all turning points as in 3b, •: turning
points used for fit, dashed line: 2nd order fit).

suggesting that rAB is not the best variable. In fact, it
is contrary to expectation for Hamiltonians (4b–4d), all
suggesting, like the UEOS, a more natural inverse 1/rAB

dependence, even for repulsive states. Fitting the curve in
Figure 4a with a 4th or 6th order polynomial leads to bad
results.

Therefore, the simple 2nd order fit, imposed by (8c)
for the bound state, is applied to the more natural E,

1/rAB presentation (Fig. 4b). This must lead, given the
fundamental nature of (8c), to a value of Kratzer asymp-
tote HK . The generic value chosen in Table 1 corresponds
with 1RH , 0.5 a.u. or the ionization potential of atom
H, IPH . Despite the simplicity of (8c) compared with HL-
theory, it gives an acceptable picture for the observed PEC
(see Figs. 3a and 3b).

For the fit, the highest levels as well as zero and first
level are disregarded, as indicated in Figure 4b. There
are various reasons to legitimate this procedure. First,
the asymptote for (8c) is not HL-asymptote (4a) and
since (8c) like (4d) is confined to the minimum, the highest
levels can be omitted. Next, there is an uncertainty about
the inversion procedures for constructing PECs. Differ-
ent competing methods (Rydberg-Klein-Rees or RKR
method, Inverted Perturbation Approach or IPA, . . . ) ex-
ist, the details of which are not discussed here [6,13,19].
This is why the first level is skipped also, since inversion
discrepancies can be large in the neighborhood of the min-
imum. Using rAB-values in Å for the turning points in
Figures 4a and 4b allows a direct quantification of coeffi-
cients a and b with a 2nd order fit. One of these is Kratzer
asymptote HK , obtained at 1/rAB = 0 or rAB = ∞ (see
Fig. 4b), where it intersects the axis. For the remaining
9 levels (18 data points), the goodness of a simple 2nd
order fit is acceptable (R2 = 0.99). The result is

E(1/rAB) = 38595.4/r2
AB−109147.7/rAB+78394.9 cm−1

(9)
which, to make sense, must be interpreted in terms of
available atomic or molecular constants of H and (8c).
With the H-electron affinity EAH equal to 6081.4 cm−1

and IPH equal to the Rydberg, the absolute position of
the ionic asymptote IPH + EAH is at +115760 cm−1.
If this gap is shifted towards the minimum of the well
depth −Dcov = −38283 cm−1, its new position is at
+77477 cm−1. With fit (9), the asymptote for Kratzer po-
tential (8c) is at +78395 cm−1, a difference of only 1.2%
with the value derived with the constants.

Using the information on the constants, the coefficients
in (9) for system HH̄ can all be identified as

E(1/rAB) = Dcov/r2
AB − IPH/rAB

+ (IPH + EAH − Dcov) cm−1. (10a)

This is an amazing and unexpected result for theoretically
predicted (4d) and impossible with the repulsive Hamilto-
nian H+(1) of HL-theory. The Kratzer asymptote HK in
(8c) is positioned at

HK = (IPH + EAH) − Dcov = Hion − Dcov. (10b)

This means that the gap, covered by Kratzer poten-
tial (8c), is exactly the same as the gap between the ionic
asymptote Hion in (4c) and the atomic one Hatom, ap-
pearing in HL-theory (4a) [6]. In fact, in the classical ionic
approximation (4c) for a hydrogenic system

Hion = IPH + EAH (10c)
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is simply the energy of anion H− but also of charge-
inverted anti-anion H̄−. With charge-inversion, composite
cations with total unit charge +1 cannot be excluded.

The equilibrium constraint by taking the first deriva-
tive of (8c) gives an equilibrium separation for the
baryons, equal to re = 2 × 38595.4/109147.7 = 0.71 Å,
close to the observed value (0.74144 Å).

As remarked before [6], generic result (8c) may help to
improve current inversion techniques.

The generic approach on the basis of twofold Hamilto-
nian symmetry not only solves the HH̄ problem. It im-
mediately leads to unprecedented results regarding the
stability of the 4-particle system, not even imaginable in
the context of HL-theory. Asymptotic freedom for chem-
ical systems implicates that the HL-asymptote is noth-
ing else than a trompe-l’œil (an optical illusion) [11]. In
other words, the stability of molecular hydrogen must be
explained with the charge-inverted ionic asymptote, for
which (3) applies, instead of with the atomic asymptote
of HL-theory. Exactly HL-theory is at the basis of the re-
jection of ionic bonding, suggested in the early 19th cen-
tury by people like Berzelius [6]. This historical mistake
must be corrected by 2005, as exactly this rejection led to
unnecessary problems with antihydrogen.

The most important result, however, is that the
dilemma about the interpretation of eigenvalues (2c), the
result of standard HL-theory with wave functions but also
the generic result of the charge-inverted Hamiltonian with-
out wave functions, is solved definitely in favor of charge-
inversion symmetries, conventionally forbidden in nature.

Given the importance of this conclusion, one should
verify if results (10) in favor of (3) are not accidental and
exclusively applicable for simple system HH̄. This confir-
mation can be achieved by studying other 4-particle sys-
tems (chemical bonds).

10.3 Confirmation from 37 other bonds based
the lower order molecular spectroscopic constants

A consistency check using PECs for many other bonds is
elaborate [6]. To avoid the inversion procedure for PECs,
working directly with observed molecular constants is pos-
sible by using a very elegant method proposed already
50 years ago by Varshni [10]. In this method, observed first
order molecular spectroscopic constant like αe (a first or-
der rotational constant) and ωexe (a first order vibrational
constant) suffice to compare directly the spectroscopic
characteristics of bonds (4-particle systems), including
their PECs and their properties around the equilibrium
distance (the well depth). The Varshni method [10] was
used in previous work [11]. Varshni drew the attention to
the Sutherland parameter ∆ [20], called so by him in honor
of Sutherland. For 4-particle systems (bonds), ∆ combines
3 major equilibrium properties

∆cov = (1/2)ker
2
e/Dcov (11)

since ke is the force constant, re the equilibrium dis-
tance (inter-baryon separation) and the asymptote, in

(a)

(b)

Fig. 5. (a) Plot of F versus the covalent Sutherland parame-
ter ∆. Solid lines represent theoretical predictions (ion, Morse)
and an empirical relation (cov). The following symbols have
been used: (◦) H2, (�) M2, ( ��) X2, (Θ) HX, (�) MH, (◦) LiX,
(�) NaX, (×) KX, (•) RbX + CsX. (b) Plot of F versus the
ionic Sutherland parameter. Same notations as in (a). Figures
reproduced by courtesy of the Verlag Zeitschrift für Natur-
forschung.

this case Dcov, the covalent bond energy, all important
parameters for a band spectrum. The obvious connec-
tion with HL-theory (1) is the use of atomic asymptote
Dcov. With Kratzer-type results (8c) and (9)-(10) deriv-
ing from (3), the better asymptote would be Hion = Dion,
the ionic bond energy Dion instead of the covalent bond
energy Dcov.

When Varshni function F , analytically related to ro-
tational constant αe [10] is plotted versus ∆cov for 39 di-
atomic bonds or 4-particle systems, including H2, a single
straight line is expected theoretically [10,11,21]. Figure 5a
shows the actual result (this figure is reproduced from
our 1982 paper [21]). The curves shown in Figure 5a are:
curve ion derives from a simple ionic Born-Landé poten-
tial, curve Morse is the prediction of the Morse poten-
tial and curve cov refers to an empirical equation due to
Varshni [10]. To arrive at a Sutherland parameter, it must
be realized that ke as well as re are determined by exper-
iment and that only the choice for the asymptote is free.
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Figure 5a clearly reveals that a choice for HL-asymptote
Dcov in (11) leads to a large spectroscopic gap between
ionic and covalent 4-particle systems, difficult to under-
stand if HL-theory was universally valid, i.e. for any type
of 4-particle system or bond. HL-related choice (11) gen-
erates a large and fundamental difference between cova-
lent and ionic bonding, invisible in either Hamiltonian (1)
or (3). The conclusion from Figure 5a is that the use
of Dcov advocated by HL-theory, is not really of uni-
versal character, since it does not apply to all types of
bonds [11,21]. Hence, HL-theory cannot be the universal
theory either, despite convention and despite its general
acceptance by the establishment.

As shown in this work by (10c), deriving from (3), an
ionic more universal Sutherland parameter

∆ion = (1/2)ker
2
e/Dion (12)

should provide a better solution [21]. Plotting F versus
∆ion gives Figure 5b (also reproduced from [21]). The gap
of Figure 5a, due to (11), has simply disappeared, even
for the homonuclear or covalent molecules including H2,
analyzed in detail above [21] (the only aberration is F2).

A completely similar situation is found for Varshni
function G, related to vibrational constant ωexe for the
same 39 bonds (see [21] for the details).

The confirmation needed for the result of the fore-
going paragraph, stating that stable molecular hydrogen
must be denoted as HH̄, is provided by 38 other bonds
or 4-particle systems, all more complex than simple pro-
totype H2. This validates our interpretation of the eigen-
values (2c) as being due to charge-inversion as well as the
reliability of Kratzer potential (8c).

Looking at these large scale results (39 bonds), it goes
without saying that HL-theory based (11), fails exactly for
those bonds it was meant to describe so accurately: cova-
lent 4-particle systems like H2, Li2, Na2, K2. . . As argued
above, this failure of HL-theory is due to the neglect of
asymptotic freedom for 4-particle systems and of internal
Hamiltonian symmetries (4a). The rejection of ionic bond-
ing by the chemistry establishment was indeed a fatal, if
not an historical misjudgment.

Moreover, we tested ionic asymptotes and the Kratzer
potential with the spectroscopic constants for more than
300 chemical bonds or 4-particle systems [11]. This elab-
orate study confirms the usefulness of (12), and therefore
the universal properties of the Kratzer model (8c) and
results (10). With some modification, the method was as-
tonishingly accurate and led to a variety of conclusions,
we cannot all repeat here. For instance, we argued, with
Varshni [10], that the famous Dunham expansion [22], con-
sidered as a standard for molecular spectroscopy, must be
rejected also as it uses the wrong variable for the inter-
baryon separation rAB/r0, whereas, as shown above, the
inverse Kratzer variable r0/rAB is the better choice [11].
The argument here is again common sense. Kratzer po-
tential (8c), even when expanded, will always converge,
as its character is attractive, like that of (3) from which
it derives. Due to the analytical form of its variable, the
Dunham expansion can never converge but is nevertheless

used persistently for bound systems for many a decade.
The analogy with wave mechanics is evident: to arrive at a
reasonable convergence with the non-converging Dunham
potential, the number of Dunham-coefficients needed is al-
most infinite. Even then, only moderate convergence can
be achieved. Similarly, using a repulsive Hamiltonian (1)
to describe a bound system, like Heitler and London did,
the number of wave functions needed to achieve (only
moderate) convergence will have to be almost infinite too.
In theoretical or computational chemistry, just like in [1],
extremely complicated wave functions, even with more
than 100 terms, are the rule rather than the exception.

Again, all this evidence suggests that, to explain bond-
ing at short range even for molecular hydrogen, one
should, if any are needed, use ionic wave functions of type
multiplicative type 1sA(a)1sA(b) and/or 1sB(a)1sB(b).
Additive ionic functions like 1sA(a)1sA(b)±1sB(a)1sB(b)
will secure the total system does not exhibit a dipole mo-
ment, see (8d). We also verify that the already proven re-
pulsive behavior of the HL-procedure at long range [2b–2d]
remains valid even at shorter range (see below).

10.4 Additional evidence from atomic and molecular
constants

Additional consistency checks of alternative bonding
scheme (3) for 4-particle systems are easily made and
go beyond the simplest systems HH and HH̄. A chemi-
cal check is obtained by equating the 2 descriptions of the
total well depth for any covalent or homonuclear 2-atom
system X2 [11]. The first is the sum of ionization potentials
IPX and covalent bond strength Dcov(X2), which refers to
the HL atomic dissociation limit. With an ionic dissocia-
tion limit, electron affinity EAX and ion separation rXX

are also needed. Since the two methods describe the same
asymptote difference (the total well depth), the identity
2IPH + D(H2) = IPH + EAH + e2/rAB leads, amongst
others, to results of type

e2/rAB + EAH = IPH + D(H2) (13)

which can easily be tested with experimental data for
atoms other than H. This simple result refers in its own
way to the degeneracy of eigenvalues (2c) and those
of (4a).

With this degeneracy, it appears that even for so-called
insoluble 4 particle systems, molecular and atomic data
are very simply correlated as in (13). Figure 6 illustrates
the validity of (13) for 12 for homonuclear bonds X2 with
X = H, Li, K, Na, Rb, Cs (series �) and Ag, Au, F, Cl,
Br, I (series ◦). Despite the simplicity of argument (13), it
is obeyed very neatly, although the data separate in two
sets, referring to the position of elements in the columns
of the table [11].

10.5 Critical distance

Using a similar argument, it is also straightforward to
estimate the critical distance where the transition from
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Fig. 6. Linear relation (13) between atomic and molecular con-
stants for 12 homonuclear covalent diatomic bonds X2 ((�) H,
Li, Na, K, Rb, Cs; (◦) F, Cl, Br, I, Au Ag).

Hamiltonian (1) to (3) may occur. This is easily visible
with Figures 3a and 3b where crossing of various curves
at long-range is illustrated. This critical distance for two
atoms H obeys

e2/rcrit = IEH − EAH . (14)

The critical region is of interest to compare VB- and MO-
theories but also to test HL-theory. Particle transfers at
the critical distance are relatively easily to observe with
femtochemistry [23]. As before [6], we again associate this
critical distance with the transition from an atom-atom
HL system (1) to a charge-inverted atom-antiatom system,
obeying (3), where a Kratzer or Coulomb potential takes
over (see Figs. 3a and 3b), if crossing is avoided [6,11].

10.6 Consequence from molecular evidence on natural
chemical system HH̄ for atom system hydrogen

It is remarkable that the very same 19th century common
sense classical ionic Coulomb interactions (4c), abandoned
in favor of exchange forces soon after HL-theory was pub-
lished in 1927 [2a], must now come to the rescue to solve
the HH̄-problem. In fact, the interference of ionic inter-
actions, starting at an asymptote between 0 and 2IPH ,
explain why the apparatus of wave mechanics is so com-
plex. It was once laughingly said that quantum chemistry
cannot but weigh a captain of a ship by weighing the ship
when is and is not on board [24a]. With this metaphor,
ionic interactions find their origin within the ship as its
asymptote is well above the atomic one, i.e. within the
interior of the ship.

More generally, computational problems with modern
ab initio quantum chemistry, using HL Hamiltonian (1),

MO with full CI, are established beyond doubt and proven
de facto. Some of these can be avoided with a less strin-
gent DFT but the main cause for these computational dif-
ficulties is commonly known as the Coulomb-problem, e.g.
the repulsive leptonic term +e2/rab in Hamiltonian (1).
Modern codes rely on the possibility to cut-off (part of)
this annoying repulsive term, see for instance [24b]. With
charge-inverted (3), lepton repulsion becomes attractive,
which seems to offer an alternative to deal with this long
standing Coulomb-problem (electron correlation), implicit
with (1).

But it must be evident by now that the natural stable
HH̄ bond has been identified as the well-known hydrogen
molecule, usually denoted by H2. As a condition sine qua
non, this immediately implies that equally simple spec-
troscopic signatures should exist to prove the presence of
charge-inverted H, i.e. antihydrogen H̄, in nature too. This
brings in atomic physics and the spectroscopic identifica-
tion of natural atomic species H̄ (see Introduction).

11 Confirmation by signatures for natural H̄
in the available H-spectrum

Exactly as with the abundant molecular spectroscopic ev-
idence above for the identification of HH̄ as simple natural
H2, but persistently overlooked for about 75 years, a simi-
lar almost identical situation applies for the identification
of natural atom H̄. A first misjudgment was made about
the reliability of ionic bonding and natural charge inver-
sion in the case of chemical bonding but a second similar
misjudgment was made in atomic physics many decades
ago about the reliability of the Bohr Hamiltonian (6), pro-
ducing reasonable results for atom H, without using wave
functions.

As we stated before [12], solving chemical problem HH̄
only makes sense, if the presence of H̄ can also be proved
in nature. The strange thing is that, just like we had to
use 19th century chemistry to solve the problem with HH̄
in nature, we are again forced to use 19th century evidence
to prove the reality of H̄ in nature too. This evidence re-
lates to the discovery of chiral behavior (mirrored struc-
tures, enantiomers, optical activity. . . ) and its importance
in nature by pioneers like Pasteur, Van’t Hoff, Lebel. . .

Hund set out the constraints for chiral behavior [25], in
the same year and in the same journal as HL-theory [2a].
Hund found that the PEC for a system, able to manifest
itself either as a left- or a right-handed structure, can-
not consist of a single well but must have two wells. One
well is for the left-handed, the other for the right-handed
structure, with a maximum in between the 2 wells. These
PECs are of Mexican hat-type. Given this evidence, it suf-
fices to find a Mexican hat type PEC within the observed
spectrum of natural system H. If this can be detected, the
existence of natural enantiomers H and H̄ is proved.

The generic approach to left-right transitions is pro-
vided with a 3-dimensional Cartesian reference frame. The
mathematics is simple if the symmetry is not violated. The
possibility that this symmetry is violated, leads to the
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difficulties in physics and chemistry. Nevertheless, the
mathematical model leads to some basic generic charac-
teristics or signatures for a transition from a left- to a
right-handed structure (reference frame). It is indeed pos-
sible to quantify the most important signatures a priori
or in a generic way since these signatures are system in-
dependent. In fact, 3 generic signatures are available to
detect the presence of H̄ with spectral data. These are
rather elemental but all are subject to only one constraint

1. if H and H̄ are really mirror images, the mirror plane
must be situated at 90◦ or π/2 radians;

2. if hydrogen exhibits chiral behavior, a double well or
Mexican hat PEC must exist;

3. if a permutation (inversion) is at work, the end result
is a rotation by 180◦ or π radians;

4. common constraint: these 3 signatures are not covered
by simple Bohr atom theory, due to (5).

Condition 4 is proved since Bohr H-Hamiltonian (6) does
not contain any term to represent chiral behavior or an
internal parity operator related with such behavior. In
fact, a charge-inversion or a permutation of charges (sig-
nature 3) leaves the Bohr Hamiltonian invariant. There-
fore, if signatures 1-3 exist, they can only be retraced
in the deviations of Bohr theory from experiment, due to
constraint 4. Then, if hydrogen shows chiral behavior not
covered by Bohr theory, the errors of Bohr theory can-
not be at random but must show a definite very specific
pattern, which may reveal the 3 signatures even quantita-
tively, pending the accuracy of the spectral data.

Exactly because of its simplicity, Bohr theory can be
tested in a number of different equally simple ways. One
test is to verify if the hydrogen Rydberg RH is really con-
stant, as claimed by Bohr with his famous formula for
H-level energies

EnH = −RH/n2 (15)

where n is principal quantum number, giving, without
wave functions, the eigenvalues of the atomic H Hamil-
tonian (6). With (15), the values of −EnHn2 provide with
the real Rydberg or the RH(n) value needed to reproduce
the exact energy for each level n, if Bohr’s version of (15)
were not correct.

This simple analysis was actually done a few years ago
for the H Lyman series [12]. RH as conceived by Bohr
for (15) is not a constant at all. Its variations (the errors
of Bohr theory) follow a parabolic law in function of 1/n,
with a maximum Rydberg-value of 109679.3522 cm−1 at
principal quantum number n = π/2, exactly the value
expected for chirality signature 1 [12]. This result was left
unnoticed since the time of Bohr (1913). Signature 1 for
the presence of H̄ in nature is thus confirmed.

In turn this harmonic Rydberg [12] is a perfect input-
value to recalculate level energies with Bohr formula (15)
and to subtract these results from the observed ones, giv-
ing differences ∆EnH .

Also this analysis was done in 2002 [26] but published
in 2004 [27]. A plot of differences ∆EnH versus 1/n pro-
duces a perfect Mexican hat or double well potential for

natural system H. This result confirms Hund-based chi-
rality signature 2 to prove the existence of enantiomers H
and H̄ in nature.

The maximum between the 2 wells of the Mexican hat
PEC is situated exactly at n = π [26,27], which con-
firms chirality signature 3 and proves that a permuta-
tion of charges (a charge-inversion) occurs when natural
left-handed H goes over in natural right-handed H̄. Re-
minding the transition from molecular Hamiltonian (1)
to (3), this is an intra-atomic charge inversion, indicat-
ing that, if left-handed H has charge distribution (+;−),
right-handed antihydrogen H̄ must have inverted charge
distribution (−;+).

Since these 3 signatures are not covered with Bohr
theory, this confirms condition 4 and fits in (5).

Having found these 3 essential generic signatures for
the presence of atomic H̄ in nature proves the simple
logic and the common sense of our approach towards an-
tiatom H̄. In turn, these 3 signatures confirm the com-
plete analysis above on the chemistry of HH̄-interactions
and the validity of molecular Hamiltonian (3), despite its
rejection by the establishment. All this proves the useful-
ness of our starting hypothesis: to focus on Hamiltonians
rather than on wave functions and our restrictions about
the relative predictive power and/or reliability of wave me-
chanics in general.

In addition, since the H-line spectrum shows a transi-
tion governed by a parity operator, not contained in the
Bohr Hamiltonian (6), the terms responsible for the chiral
behavior must be identified and incorporated in a symme-
try adapted atomic Hamiltonian.

The phenomenological, semi-empirical analysis in
[12,26,27] shows that the eigenvalues (15) must be
adapted as

−EnH = (R∗
H/n2)[1 − A(1 − (π/2)/n)2] cm−1 (16)

with A ≈ √
π [12,27,28] and where R∗

H is the harmonic
Rydberg at n = π/2 [12].

The analyticity of chiral eigenvalues for system hydro-
gen (16) is quite particular in that, exactly as in the case
of the chemical bond HH and HH̄ studied above, a wrong
asymptote choice can also lead to a wrong interpretation
of the line spectrum. For instance, using the classical Bohr
asymptote of 109678.77 cm−1 in (16) instead of the har-
monic Rydberg R∗

H of 109679.35 cm−1 [12,26,27] will dis-
tort the double well PEC in [26,27] to leave only one well,
as illustrated in detail elsewhere [8]. Using a wrong asymp-
tote for H, would suggest that H is a one well system like
in Bohr-theory and illustrated with (5), whereas, in real-
ity, it is a double well system, which explains its chiral
behavior.

To order 1/n4, result (16) is very similar to standard
bound state QED for H, based on the Dirac-Sommerfeld
equations [28]. However, the critical n-value in QED for
the Lyman-series is n = 3/2, close to but different from
n = π/2 [12]. Dirac bound state theory predicted that the
H np-series had to be degenerate with the ns-series, as
both series were subject to critical n = 3/2. As remarked
above, this prediction by Dirac-based bound state the-
ories, considered as absolutely valid at the time (before
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1947), was flawed with the discovery of the now famous
Lamb shift [29]. The standard Lamb shift can therefore be
connected with the difference between 3/2 and π/2 [12]
and, by virtue of signature 1, with chiral behavior in nat-
ural system H. It appears that, historically, a unique oc-
casion to prove the reality of H̄ was wasted more than
50 years ago when the Lamb shift was discovered. Rather
than focusing on the possibility that chiral behavior could
be involved, this discovery led to the increasing complexity
of bound state QED, as we know it today [28] but which,
because of our results, cannot yet be validated [12]. It is
remarkable that an unexpected byproduct of the present
analysis is a striking similarity between this classical model
for 4 elementary particle systems (bonds) and the quark
model for (many) elementary particle system in general.

12 Conclusion

When looked at in an historical perspective, the main
problem with H̄ is that there should not be a problem at
all. It is time to end the speculations, dreams and phan-
tasies on H̄ by physicists: patents on H̄-production and
storage [30] as well as the prospect of using H̄-driven ve-
hicles for deep space travelling, even appearing in refereed
physics journals [31].

It appears that the reliability, robustness and simplic-
ity of 19th century Hamiltonians and their mutually ex-
clusive character (bonding or anti-bonding, attractive or
repulsive) for neutral 4-unit charge Coulomb systems must
be reviewed and its implications on the computational side
reassessed.

Combining all molecular and atomic evidence collected
above, there is only one conclusion possible: the existence
of natural antihydrogen H̄ as well as of HH̄ in nature is
established beyond doubt. Contrary to common belief and
expectation, H and H̄ do not annihilate but, instead, they
form a very stable bond, called the hydrogen molecule HH̄
but conventionally denoted by H2 or H(↑)H(↓).

The price to pay for a generic solution for both H̄
and HH̄ is to admit that, historically, something in the
early days of atomic, molecular quantum physics and/or
theoretical chemistry has gone wrong. Bohr, Heitler and
London can hardly be blamed, as the concept of an-
tiparticles (charge-inversion) did not exist at their time.
The importance of work by Hund and Lamb for chiral
behavior of hydrogenic systems can hardly be overesti-
mated. More consequences, applications and prospects
are in [6,11–13,27], those relating to the ongoing H̄-
experiments at CERN [5] are given elsewhere [8].

We can safely conclude that solving some basic prob-
lems with H̄ and HH̄ in (the advent of) Physics or
Einstein Year 2005 is feasible.

I am in debt to a referee for constructive remarks, to
Marco Tomaselli (GSI) for discussions and to Ivo Verhaeghe
(U Ghent) for technical assistance.
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